Question |
Answer |
Twierdzenie o próbkowaniu start learning
|
|
Sygnał ciągły o maksymalnej częstotliwości fm może być jednoznacznie odtworzony z próbek, jeśli częstość próbkowania fs spełnia warunek: fs≥2fm.
|
|
|
Maksymalna częstotliwość (f_m) start learning
|
|
Najwyższa składowa harmoniczna (sinusoida) istniejąca w widmie sygnału. Wyznacza ona pasmo sygnału. Powyżej $f_m$ energia sygnału musi wynosić 0, aby uniknąć aliasingu i móc wiernie odtworzyć sygnał z próbek
|
|
|
|
start learning
|
|
to połowa tempa próbkowania, czyli fN=fs/2. Jest to graniczna częstotliwość sygnału, którą można poprawnie odtworzyć po dyskretyzacji.
|
|
|
|
start learning
|
|
Zjawisko nakładania się widm sygnałów podczas próbkowania zbyt niską częstotliwością – wysokie częstotliwości "udają" niższe i są nie do odróżnienia po próbkowaniu
|
|
|
|
start learning
|
|
Dolnoprzepustowy filtr analogowy stosowany przed próbkowaniem, który usuwa składowe powyżej fs/2, aby zapobiec aliasingowi. Najczęściej używane są filtry Butterwortha lub Chebysheva, a ich dokładność zależy od rzędu filtra i częstotliwości odcięcia
|
|
|
|
start learning
|
|
Zamiana ciągłych wartości amplitudy na skończoną liczbę dyskretnych poziomów. Umożliwia zapis sygnału w formie binarnej (liczbowej). Odpowiada za rozdzielczość "pionową" sygnału cyfrowego.
|
|
|
|
start learning
|
|
Stały odstęp (krok kwantyzacji) między poziomami. Najprostsza w realizacji technicznej (standardowe ADC). Każda wartość z przedziału dostaje tę samą wagę błędu.
|
|
|
Kwantyzacja nierównomierna start learning
|
|
Zmienna szerokość kroków. Więcej poziomów dla małych amplitud, mniej dla dużych. Stosowana w audio/telefonii, by poprawić stosunek sygnału do szumu (SNR) dla cichych fragmentów.
|
|
|
|
start learning
|
|
Nieunikniony błąd (różnica) między rzeczywistym napięciem a najbliższym dostępnym poziomem cyfrowym. Maleje wraz ze wzrostem liczby bitów przetwornika (np. z 8 na 16 bitów).
|
|
|
|
start learning
|
|
Sytuacja, w której $f_s = 2f_m$. Jest to teoretyczna granica między poprawnym próbkowaniem a aliasingiem. W praktyce: Niestosowane, ponieważ grozi utratą sygnału (zależność od fazy) i wymaga fizycznie niemożliwych do zbudowania filtrów o pionowym zboczu.
|
|
|
|
start learning
|
|
Metoda analizy sygnałów niestacjonarnych. Polega na dzieleniu sygnału na krótkie segmenty za pomocą przesuwnego "okna" i obliczaniu transformaty Fouriera dla każdego z nich. Pozwala określić zmienność widma w czasie.
|
|
|
Szereg Fouriera (Definicja) start learning
|
|
Sposób przedstawienia sygnału okresowego jako sumy składowej stałej oraz nieskończonego szeregu sinusoid i kosinusoid (harmonicznych) o częstotliwościach będących wielokrotnością częstotliwości podstawowej $f_0$.
|
|
|
|
start learning
|
|
Widmo sygnału okresowego jest dyskretne (prążkowe). Oznacza to, że sygnał składa się wyłącznie z konkretnych, oddzielonych od siebie częstotliwości, a nie z ciągłego zakresu pasma.
|
|
|
Współczynnik a_0 (Składowa stała) start learning
|
|
Średnia wartość sygnału w czasie jednego okresu. Graficznie: poziom, wokół którego oscyluje wykres. Jeśli pole nad osią równa się polu pod osią, a_0 wynosi zero.
|
|
|
Co liczą całki a_n i b_n? start learning
|
|
Całki te mierzą stopień dopasowania (korelację) sygnału do funkcji cos i sin o częstotliwości $n\omega_0$. Wynik mówi nam, jaki jest udział danej harmonicznej w budowie całego kształtu fali.
|
|
|
|
start learning
|
|
Częstotliwości (zespolone), dla których transmitancja jest równa 0 (sygnał jest blokowany).
|
|
|
|
start learning
|
|
Idealny impuls matematyczny (dystrybucja). Przyjmuje wartość 0 wszędzie poza punktem $x=0$, ale jej pole powierzchni (całka) wynosi dokładnie 1. Modeluje zjawiska punktowe i chwilowe bez opisywania ich wewnętrznej struktury.
|
|
|
|
start learning
|
|
Sifting property: Najważniejsza cecha – mnożenie funkcji $f(t)$ przez deltę pod całką „wyciąga” wartość tej funkcji w punkcie wystąpienia impulsu. Pozwala to na matematyczne sformalizowanie procesu próbkowania sygnałów.
|
|
|
Co daje poszerzanie okna? start learning
|
|
Skutek: Poprawa rozdzielczości częstotliwościowej (dokładniej rozróżniamy bliskie dźwięki). Koszt: Pogorszenie rozdzielczości czasowej (nie wiemy dokładnie, kiedy dźwięk się zaczął). Idealne do analizy sygnałów wolnozmiennych.
|
|
|
|
start learning
|
|
Skutek: Świetna rozdzielczość czasowa (precyzyjna lokalizacja nagłych zdarzeń/impulsów). Koszt: Słaba rozdzielczość częstotliwościowa (widmo jest „rozmyte”). Idealne do wykrywania szybkich zmian i transjentów w sygnale.
|
|
|
Jak działa STFT (Czas vs Częstotliwość)? start learning
|
|
Mechanizm: Okno wycina fragment sygnału, a FT wyznacza jego widmo. Oś czasu pokazuje, kiedy fragment wystąpił, a oś częstotliwości (pionowa) pokazuje rozkład energii w tym fragmencie. Spektrogram łączy obie osie w jedną mapę.
|
|
|
|
start learning
|
|
Zależność: Długość okna dyktuje precyzję obu osi. Dłuższe okno to gęstsza, dokładniejsza oś częstotliwości, ale "rozmyta" oś czasu. Krótsze okno to precyzyjna oś czasu, ale rzadka i mało dokładna oś częstotliwości.
|
|
|
Dla jakich sygnałów szereg fouriera się wykorzystuje start learning
|
|
Warunek: Szereg Fouriera stosuje się tylko do sygnałów okresowych (powtarzających się w czasie). Sygnały nieokresowe (impulsowe, jednorazowe) wymagają użycia Transformaty Fouriera, a nie Szeregu
|
|
|
Warunki Dirichleta żeby można było użyć szeregu fouriera start learning
|
|
Definicja: Aby sygnał okresowy można było rozwinąć w szereg, musi spełniać warunki Dirichleta: być całkowalny w okresie, mieć skończoną liczbę ekstremów i punktów nieciągłości. Większość sygnałów fizycznych te warunki spełnia.
|
|
|
Transformata Laplace’a – Definicja start learning
|
|
Opis: Narzędzie przekształcające funkcję czasu x(t) w funkcję zmiennej zespolonej X(s). Ułatwia analizę układów liniowych poprzez zamianę trudnych równań różniczkowych na proste równania algebraiczne.
|
|
|
Kluczowe właściwości laplace'a start learning
|
|
Cechy: Liniowość (suma sygnałów = suma transformat). Przesunięcie w czasie to mnożenie przez e^{-st0}. Najważniejsze: splot w czasie to zwykłe mnożenie transformat, a całkowanie to dzielenie przez s.
|
|
|
|
start learning
|
|
Związek: Transformata Laplace’a to uogólnienie Fouriera. Jeśli w wzorze Laplace’a przyjmiemy, że część rzeczywista sigma=0 (czyli s = jw), otrzymamy klasyczną ciągłą transformatę Fouriera.
|
|
|
|
start learning
|
|
L{f}(s) = całka od 0 do ∞ z f(t) * e^(-s*t) dt
|
|
|
Ciągła transformacja Fouriera start learning
|
|
Opis: Przekształca sygnał z dziedziny czasu t do dziedziny częstotliwości f. Pozwala wyznaczyć widmo sygnałów nieokresowych. Wzór: X(f) = \int x(t) e^{-j2\pi ft} dt. Wynikiem jest funkcja ciągła, zazwyczaj zespolona.
|
|
|
|
start learning
|
|
Cechy: Liniowość, przesunięcie w czasie (zmiana fazy w widmie), skalowanie (zwężenie w czasie = poszerzenie widma). Kluczowa cecha: splot w czasie to mnożenie w częstotliwości.
|
|
|
Definicja splotu ciągłego start learning
|
|
Splot x(t) i h(t) to funkcja y(t) będąca całką iloczynu jednego sygnału i przesuniętego, odwróconego drugiego sygnału. Opisuje matematycznie proces filtracji.
|
|
|
|
start learning
|
|
Filtracja to "usuwanie" niepożądanych składowych częstotliwościowych. Zdolność ta wynika z faktu, że splot w czasie to mnożenie widm w częstotliwości.
|
|
|
Kluczowe właściwości splotu start learning
|
|
Przemienność: x*h = h*x. 2. Rozdzielność: x*(h1+h2) = x*h1 + x*h2. 3. Łączność: (x*h1)*h2 = x*(h1*h2). 4. Element neutralny: splot sygnału z deltą Diraca delta(t) daje ten sam sygnał x(t).
|
|
|
Twierdzenie o splocie (podstawowe) start learning
|
|
Splot w dziedzinie czasu odpowiada mnożeniu w dziedzinie częstotliwości. Dzięki temu skomplikowane całkowanie w czasie można zastąpić prostym mnożeniem widm.
|
|
|
Wykres Bodego (Amplituda) start learning
|
|
Rysowany dla s=jw. Skala logarytmiczna. Oś Y to wzmocnienie w dB: 20*log|H(jw)|. Częstotliwość odcięcia to punkt spadku o 3dB (połowa mocy). Każdy biegun zmienia nachylenie o -20dB/dek, a zero o +20dB/dek.
|
|
|
|
start learning
|
|
Stabilnosc (Bode) Uklad zamkniety jest stabilny, gdy dla ukladu otwartego: Zapas amplitudy: L = -A(w180) > 0 dB (wzmocnienie ponizej 0 dB dla fazy -180). Zapas fazy: f = 180 + f(w0dB) > 0 st. (faza powyzej -180 dla wzm 0 dB). Zapas musi byc dodatni
|
|
|
|
start learning
|
|
Iloczyn skalarny (calka iloczynu) mierzy podobienstwo sygnalow. Norma (pierwiastek z energii) to dlugosc wektora sygnalu. Metryka to miara odleglosci (bledu) miedzy dwoma sygnalami. Pozwala to na geometryczna interpretacje sygnalow analogowych.
|
|
|
|
start learning
|
|
Aproksymacja to przyblizenie sygnalu suma funkcji bazowych ze wspolczynnikami. Cel: minimalizacja bledu sredniokwadratowego. W bazie ortogonalnej wspolczynniki liczy sie latwo jako iloczyn skalarny sygnalu z dana funkcja bazy.
|
|
|
|
start learning
|
|
Baza Fouriera: sinusy i cosinusy (analiza czestotliwosci). Falki (Wavelets): analiza czasu i czestotliwosci, kompresja. Wielomiany ortogonalne (Legendre'a, Czebyszewa): numeryczne dopasowanie krzywych. Wybor bazy zalezy od celu analizy.
|
|
|